T

Giải mục 3 trang 73, 74, 75 SGK Toán 11 tập 1 - Chân trời sáng tạo

Câu hỏi: Giải mục 3 trang 73, 74, 75 SGK Toán 11 tập 1 - Chân trời sáng tạo

Hoạt động 3​

Giá cước vận chuyển bưu kiện giữa hai thành phố do một đơn vị cung cấp được cho bởi bảng sau:
1685690757.png

Nếu chỉ xét trên khoảng từ 0 đến 5 (tính theo 100 gam) thì hàm số giả cước (tính theo nghìn đồng) xác định như sau:
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}6&{khi x \in \left( {0;1} \right]}\\7&{khi x \in \left( {1;2,5} \right]}\\{10}&{khi x \in \left( {2,5;5} \right]}\end{array}} \right.\)
Đồ thị của hàm số như Hình 2.
1685690797.png

a) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì sao cho \(x \in \left( {1;2,5} \right)\) và \(\lim {x_n} = 1\). Tìm \(\lim f\left( {{x_n}} \right)\).
b) Giả sử \(\left( {{x_n}'} \right)\) là dãy số bất kì sao cho \({x_n}' \in \left( {0;1} \right)\) và \(\lim {x_n}' = 1\). Tìm \(\lim f\left( {{x_n}'} \right)\).
c) Nhận xét về kết quả ở a) và b)
Phương pháp giải:
Áp dụng công thức tính giới hạn của hằng số.
Lời giải chi tiết:
a) Khi \(x \in \left( {1;2,5} \right)\) thì \(f\left( {{x_n}} \right) = 7\) nên \(\lim f\left( {{x_n}} \right) = \lim 7 = 7\).
b) Khi \({x_n}' \in \left( {0;1} \right)\) thì \(f\left( {{x_n}'} \right) = 6\) nên \(\lim f\left( {{x_n}'} \right) = \lim 6 = 6\).
c) Ta thấy \(\lim {x_n} = \lim {x_n}' = 1\) nhưng \(\lim f\left( {{x_n}} \right) \ne \lim f\left( {{x_n}'} \right)\)

Thực hành 3​

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 - 2x}&{khi x \le - 1}\\{{x^2} + 2}&{khi x > - 1}\end{array}} \right.\).
Tìm các giới hạn \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to - {1^ - }} {\rm{ }}f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right)\) (nếu có).
Phương pháp giải:
− Để tính giới hạn \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to - {1^ - }} {\rm{ }}f\left( x \right)\), ta áp dụng định lý về giới hạn bên trái và giới hạn bên phải của hàm số.
− Để tính giới hạn \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right)\), ta so sánh hai giới hạn \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to - {1^ - }} {\rm{ }}f\left( x \right)\).
• Nếu \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} {\rm{ }}f\left( x \right) = L\) thì \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right) = L\).
• Nếu \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to - {1^ - }} {\rm{ }}f\left( x \right)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right)\).
Lời giải chi tiết:
a) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} > - 1\) và \({x_n} \to - 1\). Khi đó \(f\left( {{x_n}} \right) = x_n^2 + 2\)
Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 + 2} \right) = \lim x_n^2 + \lim 2 = {\left( { - 1} \right)^2} + 2 = 3\)
Vậy \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = 3\).
Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} < - 1\) và \({x_n} \to - 1\). Khi đó \(f\left( {{x_n}} \right) = 1 - 2{x_n}\).
Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {1 - 2{x_n}} \right) = \lim 1 - \lim \left( {2{x_n}} \right) = \lim 1 - 2\lim {x_n} = 1 - 2.\left( { - 1} \right) = 3\)
Vậy \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = 3\).
b) Vì \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} {\rm{ }}f\left( x \right) = 3\) nên \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right) = 3\).
 

Quảng cáo

Back
Top