Câu hỏi: Điện năng ở một trạm phát điện được truyền đi dưới hiệu điện thế $2 \mathrm{kV}$, hiệu suất trong quá trình truyền tải là $\mathrm{H}=84 \%$. Công suất truyền đi không đổi. Muốn hiệu suất trong quá trình truyền tải lên đến $96 \%$ thì ta phải
A. giảm điện áp xuống còn $1 \mathrm{kV}$.
B. tăng điện áp lên đến $8 \mathrm{kV}$.
C. tăng điện áp lên đến $4 \mathrm{kV}$.
D. giảm điện áp xuống còn $0,5 \mathrm{kV}$.
$U=\dfrac{P}{\sqrt{\dfrac{\Delta P}{R}}\cos \varphi }\Rightarrow \dfrac{{{U}_{2}}}{{{U}_{1}}}=\sqrt{\dfrac{\Delta {{P}_{1}}}{\Delta {{P}_{2}}}}\Rightarrow \dfrac{{{U}_{2}}}{2}=\sqrt{\dfrac{16}{4}}\Rightarrow {{U}_{2}}=4kV$.
A. giảm điện áp xuống còn $1 \mathrm{kV}$.
B. tăng điện áp lên đến $8 \mathrm{kV}$.
C. tăng điện áp lên đến $4 \mathrm{kV}$.
D. giảm điện áp xuống còn $0,5 \mathrm{kV}$.
$P$ | $\Delta P$ | ${{P}_{tt}}$ |
100 (1) | $100-84=16$ (3) | 84 (1) |
100 (4) | $100-96=4$ (6) | 96 (5) |
Đáp án C.