Trang đã được tối ưu để hiển thị nhanh cho thiết bị di động. Để xem nội dung đầy đủ hơn, vui lòng click vào đây.

Cho tứ diện ABCD có AC = AD = BC = BD = a. Các cặp mặt phẳng (ACD) và (BCD), (ABC) và (ABD) vuông góc với nhau. Tính theo a độ dài cạnh CD.

Câu hỏi: Cho tứ diện ABCD có AC = AD = BC = BD = a. Các cặp mặt phẳng (ACD) và (BCD), (ABC) và (ABD) vuông góc với nhau. Tính theo a độ dài cạnh CD.
A.
B.
C.
D.
Phương pháp giải:
- Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh tam giác ABN, CDM là các tam giác vuông cân.
- Tính BN, CN theo MN.
- Áp dụng định lí Pytago trong tam giác vuông BCN, từ đó tính MN theo a và suy ra CD theo a.
Giải chi tiết:

Gọi M, N lần lượt là trung điểm của AB, CD.
Vì tam giác ACD, BCD là các tam giác cân lần lượt tại A và B nên .
Lại có .
Dễ thấy vuông cân tại N .
Chứng minh tương tự ta có vuông cân tại M nên .
.
Ta có: .
Xét tam giác vuông BCN có:
.
Vậy .
Đáp án A.
 

Câu hỏi này có trong đề thi