Câu hỏi: Cho tứ diện ABCD có AC = AD = BC = BD = a. Các cặp mặt phẳng (ACD) và (BCD), (ABC) và (ABD) vuông góc với nhau. Tính theo a độ dài cạnh CD.
A.
B.
C.
D.
A.
B.
C.
D.
Phương pháp giải:
- Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh tam giác ABN, CDM là các tam giác vuông cân.
- Tính BN, CN theo MN.
- Áp dụng định lí Pytago trong tam giác vuông BCN, từ đó tính MN theo a và suy ra CD theo a.
Giải chi tiết:
Gọi M, N lần lượt là trung điểm của AB, CD.
Vì tam giác ACD, BCD là các tam giác cân lần lượt tại A và B nên .
Lại có .
Dễ thấy vuông cân tại N .
Chứng minh tương tự ta có vuông cân tại M nên .
.
Ta có: .
Xét tam giác vuông BCN có:
.
Vậy .
- Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh tam giác ABN, CDM là các tam giác vuông cân.
- Tính BN, CN theo MN.
- Áp dụng định lí Pytago trong tam giác vuông BCN, từ đó tính MN theo a và suy ra CD theo a.
Giải chi tiết:
Gọi M, N lần lượt là trung điểm của AB, CD.
Vì tam giác ACD, BCD là các tam giác cân lần lượt tại A và B nên
Lại có
Dễ thấy
Chứng minh tương tự ta có
Ta có:
Xét tam giác vuông BCN có:
Vậy
Đáp án A.