Câu hỏi: Cho tứ diện ABCD có ABC và ABD là các tam giác đều cạnh bằng a không đổi. Độ dài CD thay đổi. Tính giá trị lớn nhất đạt được của thể tích khối tứ diện ABCD. A. B. C. D.
Phương pháp giải:
- Gọi M, N lần lượt là trung điểm của CD, AB. Chứng minh .
- Sử dụng công thức .
- Đặt CD = x, tính MN theo x, sử dụng công thức tính độ dài đường trung tuyến.
- Sử dụng BĐT Cô-si tìm GTLN của . Giải chi tiết:
Gọi M, N lần lượt là trung điểm của CD, AB.
Vì tam giác ABC, ABD là các tam giác đều cạnh a nên AB = AC = AD = BC = BD = a. là các tam giác cân tại A .
Lại có cân tại M . .
Đặt CD = x ta có .
Do đó ta có
Để đạt giá trị lớn nhất thì
Áp dụng BĐT Cô-si ta có .
Dấu "=" xảy ra .
Vậy .