Trang đã được tối ưu để hiển thị nhanh cho thiết bị di động. Để xem nội dung đầy đủ hơn, vui lòng click vào đây.

Cho tứ diện ABCD có ABC, ABD, ACD là các tam giác vuông tương ứng tại A, B, C. Góc giữa AD và (ABC) bằng ${{45}^{0}}$, $AD\bot BC$ và khoảng cách...

Câu hỏi: Cho tứ diện ABCD có ABC, ABD, ACD là các tam giác vuông tương ứng tại A, B, C. Góc giữa AD và (ABC) bằng , và khoảng cách giữa AD và BC bằng a. Tính thể tích khối tứ diện ABCD.
A.
B.
C.
D.
Phương pháp giải:
- Dựng hình chữ nhật ABHC, chứng minh .
- Xác định góc giữa AD và (ABC) là góc giữa AD và hình chiếu của AD lên (ABC).
- Chứng minh ABHC là hình vuông.
- Xác định đoạn vuông góc chung của AD và BC.
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao DH và độ dài đường chéo của hình vuông ABHC.
- Tính , từ đó tính thể tích .
Giải chi tiết:

Dựng hình chữ nhật ABHC ta có:



⇒ AH là hình chiếu của AD lên (ABC) .
Ta có: .
là hình vuông (Tứ giác có hai đường chéo vuông góc).
Gọi , trong (ADH) kẻ ta có:
.
Xét tam giác OKA vuông tại K có nên tam giác OAK vuông cân tại K .
.
Lại có tam giác AHD vuông cân tại H nên .
Ta có: .
Vậy .
Đáp án D.
 

Câu hỏi này có trong đề thi