Câu hỏi: Cho hình nón có đường kính đáy bằng 4. Biết rằng khi cắt hình nón đã cho bởi mặt phẳng qua trục, thiết diện thu được là một tam giác đều. Diện tích toàn phần của hình nón đã cho bằng
A. $4\left( \sqrt{3}+1 \right)\pi .$
B. $12\pi .$
C. $\dfrac{20\pi }{3}.$
D. $32\pi .$
Ta có tam giác $SAB$ là tam giác đều cạnh 4 nên $SA=SB=AB=4.$
Khi đó: $R=OA=2,l=SA=4.$ Nên $h=SO=2\sqrt{3}.$
Ta có: ${{S}_{tp}}=\pi Rl+\pi {{R}^{2}}=\pi .2.4+\pi {{.2}^{2}}=12\pi $ nên chọn đáp án B.
A. $4\left( \sqrt{3}+1 \right)\pi .$
B. $12\pi .$
C. $\dfrac{20\pi }{3}.$
D. $32\pi .$
Ta có tam giác $SAB$ là tam giác đều cạnh 4 nên $SA=SB=AB=4.$
Khi đó: $R=OA=2,l=SA=4.$ Nên $h=SO=2\sqrt{3}.$
Ta có: ${{S}_{tp}}=\pi Rl+\pi {{R}^{2}}=\pi .2.4+\pi {{.2}^{2}}=12\pi $ nên chọn đáp án B.
Đáp án B.