The Collectors

Bài 3.6 trang 130 SBT hình học 11

Câu hỏi: Trên mặt phẳng \(\displaystyle \left( \alpha \right)\) cho hình bình hành \(\displaystyle {A_1}{B_1}{C_1}{D_1}\). Về một phía đối với mặt phẳng \(\displaystyle \left( \alpha \right)\) ta dựng hình bình hành \(\displaystyle {A_2}{B_2}{C_2}{D_2}\). Trên các đoạn \(\displaystyle {A_1}{A_2},{B_1}{B_2},{C_1}{C_2},{D_1}{D_2}\) ta lần lượt lấy các điểm \(A, B, C, D\) sao cho
\(\displaystyle {{A{A_1}} \over {A{A_2}}} = {{B{B_1}} \over {B{B_2}}} = {{C{C_1}} \over {C{C_2}}} = {{D{D_1}} \over {D{D_2}}} = 3\)
Chứng minh rằng tứ giác \(\displaystyle ABCD\) là hình bình hành.
Phương pháp giải
- Lấy điểm \(O\) cố định.
- Điều kiện cần và đủ để \(ABCD\) là hình bình hành là \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {O{\rm{D}}}\)
(theo bài tập 3.2)
Lời giải chi tiết
1615368022678.png

Lấy điểm \(O\) cố định rồi đặt \(\overrightarrow {O{A_1}} = \overrightarrow {{a_1}} , \overrightarrow {O{B_1}} = \overrightarrow {{b_1}} , \overrightarrow {O{C_1}} = \overrightarrow {{c_1}} , \overrightarrow {O{D_1}} = \overrightarrow {{d_1}} \). Điều kiện cần và đủ để tứ giác \({A_1}{B_1}{C_1}{D_1}\) là hình bình hành là \(\overrightarrow {{a_1}} + \overrightarrow {{c_1}} = \overrightarrow {{b_1}} + \overrightarrow {{d_1}} \) (theo bài tập 3.2) (1)
Đặt \(\overrightarrow {O{A_2}} = \overrightarrow {{a_2}} ,\overrightarrow {O{B_2}} = \overrightarrow {{b_2}},\) \(\overrightarrow {O{C_2}} = \overrightarrow {{c_2}} ,\overrightarrow {O{D_2}} = \overrightarrow {{d_2}} \).
Điều kiện cần và đủ để tứ giác \({A_2}{B_2}{C_2}{D_2}\) là hình bình hành là \(\overrightarrow {{a_2}} + \overrightarrow {{c_2}} = \overrightarrow {{b_2}} + \overrightarrow {{d_2}} \) (2)
Đặt \(\overrightarrow {OA} = \overrightarrow a , \overrightarrow {OB} = \overrightarrow b , \overrightarrow {OC} = \overrightarrow c , \overrightarrow {OD} = \overrightarrow d \).
Ta có \({{A{A_1}} \over {A{A_2}}} = 3 \Rightarrow \overrightarrow {A{A_1}} = - 3\overrightarrow {A{A_2}} \)
\(\eqalign{
& \Leftrightarrow \overrightarrow {O{A_1}} - \overrightarrow {OA} = 3\left({\overrightarrow {O{A_2}} - \overrightarrow {OA} } \right) \cr
& \Leftrightarrow \overrightarrow {{a_1}} - \overrightarrow a = - 3\left({\overrightarrow {{a_2}} - \overrightarrow a } \right) \cr
& \Leftrightarrow \overrightarrow a = {1 \over 4}\left({\overrightarrow {{a_1}} + 3\overrightarrow {{a_2}} } \right) \cr} \)
Tương tự: \(\overrightarrow b = {1 \over 4}\left( {\overrightarrow {{b_1}} + 3\overrightarrow {{b_2}} } \right)\),
\(\overrightarrow c = {1 \over 4}\left( {\overrightarrow {{c_1}} + 3\overrightarrow {{c_2}} } \right),\overrightarrow { d} = {1 \over 4}\left({\overrightarrow {{d_1}} + 3\overrightarrow {{d_2}} } \right)\).
Ta có: \(\overrightarrow a + \overrightarrow c = {1 \over 4}\left( {\overrightarrow {{a_1}} + 3\overrightarrow {{a_2}} } \right) + {1 \over 4}\left({\overrightarrow {{c_1}} + 3\overrightarrow {{c_2}} } \right)\)
\(= {1 \over 4}\left( {\overrightarrow {{a_1}} + \overrightarrow {{c_1}} } \right) + {3 \over 4}\left({\overrightarrow {{a_2}} + \overrightarrow {{c_2}} } \right)\)
Và:
\(\eqalign{
& \overrightarrow b + \overrightarrow d = {1 \over 4}\left({\overrightarrow {{b_1}} + 3\overrightarrow {{b_2}} } \right) + {1 \over 4}\left({\overrightarrow {{d_1}} + 3\overrightarrow {{d_2}} } \right) \cr
& = {1 \over 4}\left({\overrightarrow {{b_1}} + \overrightarrow {{d_1}} } \right) + {3 \over 4}\left({\overrightarrow {{b_2}} + \overrightarrow {{d_2}} } \right) \cr}\)
Từ (1) và (2) ta có \(\overrightarrow {{a_1}} + \overrightarrow {{c_1}} = \overrightarrow {{b_1}} + \overrightarrow {{d_1}} \) và \(\overrightarrow {{a_2}} + \overrightarrow {{c_2}} = \overrightarrow {{b_2}} + \overrightarrow {{d_2}} \) nên suy ra :
\(\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d \Leftrightarrow \overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {O{\rm{D}}} \)
⟺ tứ giác \(ABCD\) là hình bình hành.
 

Quảng cáo

Back
Top