Trang đã được tối ưu để hiển thị nhanh cho thiết bị di động. Để xem nội dung đầy đủ hơn, vui lòng click vào đây.

Lý thuyết hàm số

Câu hỏi: 1. Định nghĩa
Cho . Một hàm số xác định trên là một quy tắc cho tương ứng mỗi số với một và duy nhất chỉ một số . Ta kí hiệu:

Tập hợp được gọi là tập xác định (hay miền xác định), được gọi là biến số, tại .
Một hàm số có thể được cho bằng một công thức hay bằng biểu đồ hay bằng bảng.
Lưu ý rằng, khi cho nột hàm số bằng công thức mà không nói rõ tập xác định thì ta ngầm hiểu tập xác định là tập hợp các số mà các phép toán trong công thức có nghĩa.
2. Đồ thị
Đồ thị của hàm số:

là tập hợp các điểm trên mặt phẳng tọa độ.
3. Sự biến thiên
Hàm số là đồng biến trên khoảng nếu với mọi  hay  ta có .
Hàm số là nghịch biến trên khoảng nếu với mọi  mà  hay  ta có .
4. Tính chẵn lẻ của hàm số
Hàm số
 được gọi là hàm số chẵn nếu: , là hàm số lẻ nếu .
Ví dụ:
Hàm số là hàm số chẵn trên vì:
+) Với mọi thì .
+) .
Hàm số là hàm số lẻ trên vì:
+) Với mọi thì .
+) .
Hàm số không là hàm chẵn cũng không là hàm lẻ trên vì   nhưng .
Đồ thị của hàm số chẵn có trục đối xứng là trục tung.
Đồ thị của hàm số lẻ nhận gốc của hệ trục tọa độ làm tâm đối xứng.
Rất tiếc, câu hỏi này chưa có lời giải chi tiết. Bạn ơi, đăng nhập và giải chi tiết giúp zix.vn nhé!!!