Trang đã được tối ưu để hiển thị nhanh cho thiết bị di động. Để xem nội dung đầy đủ hơn, vui lòng click vào đây.

Hàm số $y=\left| {{\left( x-1 \right)}^{3}}\left( x+1 \right) \right|$ có bao nhiêu điểm cực trị?

Câu hỏi: Hàm số có bao nhiêu điểm cực trị?
A. 3
B. 1
C. 2
D. 4
Phương pháp giải:
Số điểm cực trị của hàm số ( với là hàm đa thức) = số điểm cực trị của hàm + số giao điểm của hàm số với trục hoành (Không tính điểm tiếp xúc).
Giải chi tiết:
Xét hàm số .
Ta có:


Trong đó là nghiệm bội chẵn, do đó hàm số đã cho có 1 điểm cực trị.
Xét phương trình hoành độ giao điểm , do đó đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt.
Vậy hàm số điểm cực trị.
Đáp án A.
 

Câu hỏi này có trong đề thi