The Collectors

Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có 3 đỉnh trùng với 3 trong số 18 đỉnh của đa...

Câu hỏi: Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có 3 đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho. Chọn 1 tam giác trong tập hợp X. Xác suất để tam giác được chọn là tam giác cân bằng
A. 317.
B. 144136.
C. 23136.
D. 1168.
Chọn ngẫu nhiên 3 trong số 18 đỉnh của đa giác ta được 1 tam giác nên n(Ω)=C183=816.
Vì đa giác đã cho là đa giác đều có 18 đỉnh nên từ mỗi đỉnh có thể tìm ra 8 cặp điểm để cùng với nó tạo ra 1 tam giác cân, trong đó có 1 tam giác đều. Từ 18 đỉnh của đa giác đều có thể tạo ra 6 tam giác đều. Vậy số tam giác cân và đều mà 18 đỉnh của đa giác đều đó tạo ra là: 18.7+6=132
Xác suất cần tìm là: 132816=1168.
Đáp án D.
 

Câu hỏi này có trong đề thi

Quảng cáo

Back
Top