Câu hỏi: Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Trên các đoạn $SA,SB,SC,SD$ lấy lần lượt các điểm $E,F,G,H$ thỏa mãn $\dfrac{SE}{SA}=\dfrac{SG}{SC}=\dfrac{1}{3},\dfrac{SF}{SB}=\dfrac{SH}{SD}=\dfrac{2}{3}.$ Tỉ số thể tích khối $EFGH$ với khối $S.ABCD$ bằng:
A. $\dfrac{2}{27}$
B. $\dfrac{1}{18}.$
C. $\dfrac{1}{9}.$
D. $\dfrac{2}{9}.$
Gọi $O$ là tâm hình bình hành $ABCD.$
Trong $\left( SBD \right)$ gọi $I=FH\cap SO\Rightarrow \dfrac{SI}{SO}=\dfrac{2}{3}.$
Trong $\left( SAC \right)$ gọi $J=EG\cap SO\Rightarrow \dfrac{SJ}{SO}=\dfrac{1}{3}.$
$\dfrac{{{V}_{SEJF}}}{{{V}_{SAON}}}=\dfrac{SE}{SA}.\dfrac{SJ}{SO}.\dfrac{SF}{SB}=\dfrac{1}{3}.\dfrac{1}{3}.\dfrac{2}{3}=\dfrac{2}{27}.$
$\Rightarrow {{V}_{SEJF}}=\dfrac{2}{27}{{V}_{SAOB}}=\dfrac{2}{27}.\dfrac{1}{4}{{V}_{S.ABCD}}=\dfrac{1}{54}{{V}_{S.ABCD}}$
$\dfrac{{{V}_{SEIF}}}{{{V}_{SAOB}}}=\dfrac{SE}{SA}.\dfrac{SI}{SO}.\dfrac{SF}{SB}=\dfrac{1}{3}.\dfrac{2}{3}.\dfrac{2}{3}=\dfrac{4}{27}.$
$\Rightarrow {{V}_{SEIF}}=\dfrac{4}{27}{{V}_{SAOB}}=\dfrac{4}{27}.\dfrac{1}{4}{{V}_{S.ABCD}}=\dfrac{1}{27}{{V}_{S.ABCD}}.$
${{V}_{F.EIJ}}={{V}_{S.EIJ}}-{{V}_{SEJF}}=\dfrac{1}{27}{{V}_{S.ABCD}}-\dfrac{1}{54}{{V}_{S.ABCD}}=\dfrac{1}{54}{{V}_{S.ABCD}}$
Chứng minh tương tự ta có:
${{V}_{F.IJG}}={{V}_{H.IJG}}={{V}_{H.IJE}}=\dfrac{1}{54}{{V}_{S.ABCD}}.$
${{V}_{EFGH}}={{V}_{F.EJI}}+{{V}_{F.IJG}}+{{V}_{H.IJG}}+{{V}_{H.IJE}}=\dfrac{4}{54}{{V}_{S.ABCD}}=\dfrac{2}{27}{{V}_{S.ABCD}}$
$\Rightarrow \dfrac{{{V}_{EFGH}}}{{{V}_{S.ABCD}}}=\dfrac{2}{27}.$
A. $\dfrac{2}{27}$
B. $\dfrac{1}{18}.$
C. $\dfrac{1}{9}.$
D. $\dfrac{2}{9}.$
Gọi $O$ là tâm hình bình hành $ABCD.$
Trong $\left( SBD \right)$ gọi $I=FH\cap SO\Rightarrow \dfrac{SI}{SO}=\dfrac{2}{3}.$
Trong $\left( SAC \right)$ gọi $J=EG\cap SO\Rightarrow \dfrac{SJ}{SO}=\dfrac{1}{3}.$
$\dfrac{{{V}_{SEJF}}}{{{V}_{SAON}}}=\dfrac{SE}{SA}.\dfrac{SJ}{SO}.\dfrac{SF}{SB}=\dfrac{1}{3}.\dfrac{1}{3}.\dfrac{2}{3}=\dfrac{2}{27}.$
$\Rightarrow {{V}_{SEJF}}=\dfrac{2}{27}{{V}_{SAOB}}=\dfrac{2}{27}.\dfrac{1}{4}{{V}_{S.ABCD}}=\dfrac{1}{54}{{V}_{S.ABCD}}$
$\dfrac{{{V}_{SEIF}}}{{{V}_{SAOB}}}=\dfrac{SE}{SA}.\dfrac{SI}{SO}.\dfrac{SF}{SB}=\dfrac{1}{3}.\dfrac{2}{3}.\dfrac{2}{3}=\dfrac{4}{27}.$
$\Rightarrow {{V}_{SEIF}}=\dfrac{4}{27}{{V}_{SAOB}}=\dfrac{4}{27}.\dfrac{1}{4}{{V}_{S.ABCD}}=\dfrac{1}{27}{{V}_{S.ABCD}}.$
${{V}_{F.EIJ}}={{V}_{S.EIJ}}-{{V}_{SEJF}}=\dfrac{1}{27}{{V}_{S.ABCD}}-\dfrac{1}{54}{{V}_{S.ABCD}}=\dfrac{1}{54}{{V}_{S.ABCD}}$
Chứng minh tương tự ta có:
${{V}_{F.IJG}}={{V}_{H.IJG}}={{V}_{H.IJE}}=\dfrac{1}{54}{{V}_{S.ABCD}}.$
${{V}_{EFGH}}={{V}_{F.EJI}}+{{V}_{F.IJG}}+{{V}_{H.IJG}}+{{V}_{H.IJE}}=\dfrac{4}{54}{{V}_{S.ABCD}}=\dfrac{2}{27}{{V}_{S.ABCD}}$
$\Rightarrow \dfrac{{{V}_{EFGH}}}{{{V}_{S.ABCD}}}=\dfrac{2}{27}.$
Đáp án A.