The Collectors

Câu 3.12 trang 87 sách bài tập Đại số và Giải tích 11 Nâng cao

Câu hỏi: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5.4^{n - 1}} + 3\)

Câu a

Chứng minh rằng \({u_{n + 1}} = 4{u_n} - 9\) với mọi \(n \ge 1\)
Lời giải chi tiết:
Ta có \({u_{n + 1}} = {5.4^{n - 1}} + 3 = {4.5.4^{n + 1}} + 3\)
\(= 4.\left( {{{5.4}^{n - 1}} + 3} \right) - 9 = 4{u_n} - 9\left({\forall n \ge 1} \right)\)

Câu b

Dựa vào kết qủa của phần a), hãy cho dãy số \(\left( {{u_n}} \right)\) bởi hệ thức truy hồi
Lời giải chi tiết:
Theo công thức xác định \({u_n},\) ta có \({u_1} = {5.4^{1 - 1}} + 3 = 8.\)Vì thế kết hợp với kết quả của phần a) suy ra có thể cho dãy số \(\left( {{u_n}} \right)\) bởi
\({u_1} = 8\) và \({u_{n + 1}} = 4{u_n} - 9\) với mọi \(n \ge 1\)
Rất tiếc, câu hỏi này chưa có lời giải chi tiết. Bạn ơi, đăng nhập và giải chi tiết giúp zix.vn nhé!!!
 

Quảng cáo

Back
Top