Câu hỏi: Biết rằng đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt có hoành độ là , , , . Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để ?
A. 9
B. 8
C. 6
D. 7
A. 9
B. 8
C. 6
D. 7
Phương pháp giải:
- Xét phương trình hoành độ giao điểm.
- Đặt ẩn phụ , đưa phương trình về dạng phương trình bậc hai ẩn t.
- Để phương trình hoành độ giao điểm có 4 nghiệm phân biệt thỏa mãn yêu cầu bài toán thì phương trình bậc hai ẩn t phải có 2 nghiệm dương phân biệt khác 1.
- Giả sử phương trình bậc hai ẩn t có 2 nghiệm dương phân biệt , suy ra 4 nghiệm x, thay vào giả thiết, sau đó áp dụng định lí Vi-ét và giải bất phương trình.
Giải chi tiết:
Ta có:
Xét phương trình hoành độ giao điểm: .
Đặt , phương trình đã cho trở thành: .
Để phương trình (*) có 4 nghiệm phân biệt thỏa mãn ycbt thì phương trình (**) phải có 2 nghiệm dương phân biệt khác 1.
Khi đó giả sử phương trình (**) có 2 nghiệm phân biệt thì phương trình (*) có 4 nghiệm phân biệt ; .
Theo bài ra ta có:
Áp dụng định lí Vi-ét ta có: .
Kết hợp điều kiện ta có . Mà .
Vậy có 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
- Xét phương trình hoành độ giao điểm.
- Đặt ẩn phụ
- Để phương trình hoành độ giao điểm có 4 nghiệm phân biệt thỏa mãn yêu cầu bài toán thì phương trình bậc hai ẩn t phải có 2 nghiệm dương phân biệt khác 1.
- Giả sử phương trình bậc hai ẩn t có 2 nghiệm dương phân biệt
Giải chi tiết:
Ta có:
Xét phương trình hoành độ giao điểm:
Đặt
Để phương trình (*) có 4 nghiệm phân biệt thỏa mãn ycbt thì phương trình (**) phải có 2 nghiệm dương phân biệt khác 1.
Khi đó giả sử phương trình (**) có 2 nghiệm phân biệt
Theo bài ra ta có:
Áp dụng định lí Vi-ét ta có:
Kết hợp điều kiện ta có
Vậy có 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Đáp án C.