Trang đã được tối ưu để hiển thị nhanh cho thiết bị di động. Để xem nội dung đầy đủ hơn, vui lòng click vào đây.

Biết đường thẳng $y=\left( 3m-1 \right)x+6m+3$ cắt đồ thị hàm số $y={{x}^{3}}-3{{x}^{2}}+1$ tại ba điểm phân biệt sao cho một giao điểm cách đều...

Câu hỏi: Biết đường thẳng cắt đồ thị hàm số tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi đó m thuộc khoảng nào dưới đây?
A.
B.
C.
D.
Phương pháp giải:
Số giao điểm của hai đồ thị hàm số là số nghiệm của phương trình
Áp dụng hệ thức Vi-et với phương trình
Tìm m để phương trình có ba nghiệm phân biệt.
Hai đồ thị cắt nhau tại ba điểm Khi đó có 1 điểm là trung điểm của đoạn thẳng gồm 2 điểm còn lại.
Giải chi tiết:
Phương trình hoành độ giao điểm của hai đồ thị hàm số và đồ thị hàm số là:



Gọi là ba nghiệm phân biệt của phương trình
Áp dụng hệ thức Vi-et ta có:
Khi đó ta có tọa độ ba giao điểm của hai đồ thị hàm số đã cho là:
Giả sử B là điểm cách đều là trung điểm của

Thay vào phương trình ta được:

Với ta được:
thỏa mãn bài toán.
Đáp án D.
 

Câu hỏi này có trong đề thi