Câu hỏi: Trong không gian Oxyz cho hình lập phương ABCD. A'B'C'D' với A(0; 0; 0), B(1; 0; 0), D(0; 1; 0), A'(0; 0; 1)
a) Hãy tìm tọa độ các đỉnh còn lại.
b) Chứng minh A'C ⊥ (BC'D)
c) Tìm tọa độ của chân đường vuông góc chung của B'D' và BC'.
a) Hãy tìm tọa độ các đỉnh còn lại.
b) Chứng minh A'C ⊥ (BC'D)
c) Tìm tọa độ của chân đường vuông góc chung của B'D' và BC'.
Lời giải chi tiết
a) Dễ thấy C(1; 1; 0), B'(1; 0; 1), D'(0; 1; 1), C'(1; 1; 1), D'(0; 1; 1).
b) Ta có:
,
Do đó và
Từ đó suy ra nên A'C ⊥ (BC'D).
c)
Gọi IJ là đường vuông góc chung của B'D' và BC'
là vectơ pháp tuyến của mặt phẳng (P) qua B'D' và song song với A'C
là vectơ pháp tuyến của mặt phẳng (Q) qua BC' và song song với A'C.
Khi đó
Phương trình của (P) là: (x - 1) + y + 2(z - 1) = 0 hay x + y + 2z - 3 = 0.
Phương trình của (Q) là: 2(x - 1) - y + z = 0 hay 2x - y + z - 2 = 0.
Phương trình của (B'D') là: .
Phương trình của (BC') là:
I là giao điểm của đường thẳng B'D' và (Q), để tìm tọa độ của I ta thế phương trình đường thẳng B'D' vào phương trình của (Q)
Ta có: 2(1 - t) - t + 1 - 2 = 0, hay t = 1/3.
Từ đó suy ra I(2/3; 1/3; 1)
Tương tự, ta tìm được J(1; 2/3; 1/3).
a) Dễ thấy C(1; 1; 0), B'(1; 0; 1), D'(0; 1; 1), C'(1; 1; 1), D'(0; 1; 1).
b) Ta có:
Do đó
Từ đó suy ra
c)
Gọi IJ là đường vuông góc chung của B'D' và BC'
Khi đó
Phương trình của (P) là: (x - 1) + y + 2(z - 1) = 0 hay x + y + 2z - 3 = 0.
Phương trình của (Q) là: 2(x - 1) - y + z = 0 hay 2x - y + z - 2 = 0.
Phương trình của (B'D') là:
Phương trình của (BC') là:
I là giao điểm của đường thẳng B'D' và (Q), để tìm tọa độ của I ta thế phương trình đường thẳng B'D' vào phương trình của (Q)
Ta có: 2(1 - t) - t + 1 - 2 = 0, hay t = 1/3.
Từ đó suy ra I(2/3; 1/3; 1)
Tương tự, ta tìm được J(1; 2/3; 1/3).