Trang đã được tối ưu để hiển thị nhanh cho thiết bị di động. Để xem nội dung đầy đủ hơn, vui lòng click vào đây.

Bài 4 trang 169 SBT hình học 12

Câu hỏi: Cho hình nón tròn xoay (H) đỉnh S, đáy là hình tròn bán kính R, chiều cao bằng h.
Gọi (H') là hình trụ tròn xoay có đáy là hình tròn bán kính r (0 < r < R) nội tiếp (H).
a) Tính tỉ số thể tích của (H') và (H);
b) Xác định r để (H') có thể tích lớn nhất.
Lời giải chi tiết

A) Giả sử đường cao SI của hình nón (H) cắt hai đáy của hình trụ (H') tại I và I'.
Khi đó
Từ đó suy ra


Do đó
b) V(H')​ lớn nhất khi f(r) = r2​(R - r) (với 0 < r < R) là lớn nhất.
Khảo sát hàm số f(r), với 0 < r < R.
Ta có f'(r) = 2Rr - 3r2​ = 0, khi r = 0 (loại), hoặc r = 2R/3.
Lập bảng biến thiên ta thấy f(r) đạt cực đại tại r = 2R/3.
Khi đó