Trang đã được tối ưu để hiển thị nhanh cho thiết bị di động. Để xem nội dung đầy đủ hơn, vui lòng click vào đây.

Bài 3.49 trang 163 SBT hình học 11

Câu hỏi: Cho hình chóp tứ giác đều S. ABCD. Gọi M, N lần lượt là trung điểm của SA và SC.
a) Chứng minh AC ⊥ SD
b) Chứng minh MN ⊥ (SBD)
c) Cho AB = SA = a. Tính cosin của góc giữa (SBC) và (ABCD)
Lời giải chi tiết

A) Gọi H là tâm hình vuông ABCD .
Ta có: AC ⊥ SH & AC ⊥ BD
⇒ AC ⊥ (SBD) ⇒ AC ⊥ SD.
b) MN là đường trung bình của tam giác SAC nên MN//AC.
Mà AC ⊥ (SBD) ⇒ MN ⊥ (SBD).
c) + Xác định góc α giữa (SBC) và (ABCD)
Gọi I là trung điểm của BC, ta có:
BC ⊥ IH & BC ⊥ SH ⇒ BC ⊥ (SIH)
⇒ BC ⊥ SI.
Ta có: nên góc giữa (SBC) và (ABCD) là góc giữa SI và HI hay .
+ Tính α:
Ta có: