Câu hỏi: Tính giá trị của các biểu thức sau với \(\left| a \right| = 1,5;b = - 0,75\)
\(M = a + 2ab - b\)
\(N = a: 2 - 2: b\)
\(\displaystyle P = \left( { - 2} \right):{a^2} - b.{2 \over 3}\)
\(M = a + 2ab - b\)
\(N = a: 2 - 2: b\)
\(\displaystyle P = \left( { - 2} \right):{a^2} - b.{2 \over 3}\)
Phương pháp giải
- Giá trị tuyệt đối của một số hữu tỉ \(x\), kí hiệu là \(|x|\), là khoảng cách từ điểm \(x\) tới điểm \(0\) trên trục số.
- Thực hiện phá dấu giá trị tuyệt đối của \(a\) sau đó thay giá trị của \(a\) và \(b\) vào các biểu thức M, N, P để thực hiện phép tính.
Lời giải chi tiết
Vì \(\left| a \right| = 1,5\) nên \(a =1,5\) hoặc \(a = -1,5\).
* Với \(a = 1,5 ; b = -0,75\), ta có:
\(M = 1,5+ 2.1,5.(-0,75) - (-0,75) \)
\(= 1,5 + (-2,25) + 0,75 \)
\(=(1,5+ 0,75) + (-2,25)\)
\(=2,25+ (-2,25) =0\)
\(\begin{array}{l}
N = 1,5:2 - 2:\left( { - 0,75} \right)\\
= \dfrac{3}{2}.\dfrac{1}{2} - 2:\dfrac{{ - 3}}{4}\\
= \dfrac{3}{4} - \dfrac{2}{1}.\dfrac{{ - 4}}{3}\\
= \dfrac{3}{4} - \dfrac{{ - 8}}{3} = \dfrac{3}{4} + \dfrac{8}{3}\\
= \dfrac{9}{{12}} + \dfrac{{32}}{{12}} = \dfrac{{41}}{{12}} = 3\dfrac{5}{{12}}
\end{array}\)
\(\begin{array}{l}
P = \left( { - 2} \right):{\left( {1,5} \right)^2} - \left( { - 0,75} \right).\dfrac{2}{3}\\
= \left( { - 2} \right):{\left( {\dfrac{3}{2}} \right)^2} + \dfrac{3}{4}.\dfrac{2}{3}\\
= \left( { - 2} \right):\dfrac{9}{4} + \dfrac{3}{4}.\dfrac{2}{3}\\
= \left( { - 2} \right).\dfrac{4}{9} + \dfrac{1}{2} = \dfrac{{ - 8}}{9} + \dfrac{1}{2}\\
= \dfrac{{ - 16}}{{18}} + \dfrac{9}{{18}} = \dfrac{{ - 7}}{{18}}
\end{array}\)
* Với \(a = -1,5; b = -0,75\) ta có:
\(M = - 1,5 + 2.(-1,5) ( - 0,75) - (-0,75)\)
\(= - 1,5 + ( +2,25) + 0,75\)\(=-1,5+(2,25+0,75)\)\(=-1,5+3 = 1,5\)
\(N = - 1,5 : 2 - 2 : ( -0,75)\)
\(\begin{array}{l}
= - \dfrac{3}{2}.\dfrac{1}{2} + 2:\dfrac{3}{4}\\
= - \dfrac{3}{4} + 2.\dfrac{4}{3}\\
= - \dfrac{3}{4} + \dfrac{8}{3}\\
= \dfrac{{ - 9}}{{12}} + \dfrac{{32}}{{12}} = \dfrac{{23}}{{12}}
\end{array}\)
\(\begin{array}{*{20}{l}}
{P = \left( { - 2} \right):{{\left( { - 1,5} \right)}^2} - \left( { - 0,75} \right).\dfrac{2}{3}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 2} \right):{{\left( {\dfrac{{ - 3}}{2}} \right)}^2} + \dfrac{3}{4}.\dfrac{2}{3}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 2} \right):\dfrac{9}{4} + \dfrac{3}{4}.\dfrac{2}{3}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 2} \right).\dfrac{4}{9} + \dfrac{1}{2} = \dfrac{{ - 8}}{9} + \dfrac{1}{2}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \dfrac{{ - 16}}{{18}} + \dfrac{9}{{18}} = \dfrac{{ - 7}}{{18}}}
\end{array}\)
- Giá trị tuyệt đối của một số hữu tỉ \(x\), kí hiệu là \(|x|\), là khoảng cách từ điểm \(x\) tới điểm \(0\) trên trục số.
- Thực hiện phá dấu giá trị tuyệt đối của \(a\) sau đó thay giá trị của \(a\) và \(b\) vào các biểu thức M, N, P để thực hiện phép tính.
Lời giải chi tiết
Vì \(\left| a \right| = 1,5\) nên \(a =1,5\) hoặc \(a = -1,5\).
* Với \(a = 1,5 ; b = -0,75\), ta có:
\(M = 1,5+ 2.1,5.(-0,75) - (-0,75) \)
\(= 1,5 + (-2,25) + 0,75 \)
\(=(1,5+ 0,75) + (-2,25)\)
\(=2,25+ (-2,25) =0\)
\(\begin{array}{l}
N = 1,5:2 - 2:\left( { - 0,75} \right)\\
= \dfrac{3}{2}.\dfrac{1}{2} - 2:\dfrac{{ - 3}}{4}\\
= \dfrac{3}{4} - \dfrac{2}{1}.\dfrac{{ - 4}}{3}\\
= \dfrac{3}{4} - \dfrac{{ - 8}}{3} = \dfrac{3}{4} + \dfrac{8}{3}\\
= \dfrac{9}{{12}} + \dfrac{{32}}{{12}} = \dfrac{{41}}{{12}} = 3\dfrac{5}{{12}}
\end{array}\)
\(\begin{array}{l}
P = \left( { - 2} \right):{\left( {1,5} \right)^2} - \left( { - 0,75} \right).\dfrac{2}{3}\\
= \left( { - 2} \right):{\left( {\dfrac{3}{2}} \right)^2} + \dfrac{3}{4}.\dfrac{2}{3}\\
= \left( { - 2} \right):\dfrac{9}{4} + \dfrac{3}{4}.\dfrac{2}{3}\\
= \left( { - 2} \right).\dfrac{4}{9} + \dfrac{1}{2} = \dfrac{{ - 8}}{9} + \dfrac{1}{2}\\
= \dfrac{{ - 16}}{{18}} + \dfrac{9}{{18}} = \dfrac{{ - 7}}{{18}}
\end{array}\)
* Với \(a = -1,5; b = -0,75\) ta có:
\(M = - 1,5 + 2.(-1,5) ( - 0,75) - (-0,75)\)
\(= - 1,5 + ( +2,25) + 0,75\)\(=-1,5+(2,25+0,75)\)\(=-1,5+3 = 1,5\)
\(N = - 1,5 : 2 - 2 : ( -0,75)\)
\(\begin{array}{l}
= - \dfrac{3}{2}.\dfrac{1}{2} + 2:\dfrac{3}{4}\\
= - \dfrac{3}{4} + 2.\dfrac{4}{3}\\
= - \dfrac{3}{4} + \dfrac{8}{3}\\
= \dfrac{{ - 9}}{{12}} + \dfrac{{32}}{{12}} = \dfrac{{23}}{{12}}
\end{array}\)
\(\begin{array}{*{20}{l}}
{P = \left( { - 2} \right):{{\left( { - 1,5} \right)}^2} - \left( { - 0,75} \right).\dfrac{2}{3}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 2} \right):{{\left( {\dfrac{{ - 3}}{2}} \right)}^2} + \dfrac{3}{4}.\dfrac{2}{3}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 2} \right):\dfrac{9}{4} + \dfrac{3}{4}.\dfrac{2}{3}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left( { - 2} \right).\dfrac{4}{9} + \dfrac{1}{2} = \dfrac{{ - 8}}{9} + \dfrac{1}{2}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \dfrac{{ - 16}}{{18}} + \dfrac{9}{{18}} = \dfrac{{ - 7}}{{18}}}
\end{array}\)