Câu hỏi: Tìm tập hợp các số nguyên \(x\), biết rằng:
\(\displaystyle 4{5 \over 9}:2{5 \over {18}} - 7 < x\displaystyle < \left( {3{1 \over 5}:3,2 + 4,5.1{{31} \over {45}}} \right):\left( { - 21{1 \over 2}} \right)\)
\(\displaystyle 4{5 \over 9}:2{5 \over {18}} - 7 < x\displaystyle < \left( {3{1 \over 5}:3,2 + 4,5.1{{31} \over {45}}} \right):\left( { - 21{1 \over 2}} \right)\)
Phương pháp giải
\(\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{{ad}}{{bd}} + \dfrac{{cb}}{{bd}} = \dfrac{{ad + cb}}{{bd}}\)
\(\dfrac{a}{b} - \dfrac{c}{d} =\dfrac{a}{b} + \dfrac{-c}{d}= \dfrac{{ad}}{{bd}} + \dfrac{{-cb}}{{bd}} \)\( = \dfrac{{ad - cb}}{{bd}}\)
\( \dfrac{a}{b} . \dfrac{c}{d} =\dfrac{a.c}{b.d}\)
\( \dfrac{a}{b} : \dfrac{c}{d}=\dfrac{a}{b}.\dfrac{d}{c} = \dfrac{a.d}{b.c}\)
Chú ý: Ta có thể rút gọn các phân số về dạng tối giản rồi thực hiện phép tính.
Lời giải chi tiết
\(\displaystyle 4{5 \over 9}:2{5 \over {18}} - 7 < x < \left( {3{1 \over 5}:3,2 + 4,5.1{{31} \over {45}}} \right):\left( { - 21{1 \over 2}} \right)\)
\(\displaystyle \frac{{41}}{9}:\frac{{41}}{{18}} - 7 < x < \left( {\frac{{16}}{5}:\frac{{16}}{5} + \frac{9}{2}.\frac{{76}}{{45}}} \right):\frac{{ - 43}}{2}\)
\(\displaystyle {{41} \over 9}.{{18} \over {41}} - 7 < x < \left( {1 + {{38} \over 5}} \right).{{ - 2} \over 43}\)
\(\displaystyle 2 - 7 < x < \left( {\frac{5}{5} + \frac{{38}}{5}} \right).\frac{{ - 2}}{{43}}\)
\(\displaystyle -5 < x < {{43} \over 5}.{{ - 2} \over {43}}\)
\(\displaystyle - 5 < x < {{ - 2} \over 5}\)
Vì \(x ∈\mathbb Z\) nên \({\rm{x}} \in \left\{ { - 4; - 3; - 2; - 1} \right\}\).
\(\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{{ad}}{{bd}} + \dfrac{{cb}}{{bd}} = \dfrac{{ad + cb}}{{bd}}\)
\(\dfrac{a}{b} - \dfrac{c}{d} =\dfrac{a}{b} + \dfrac{-c}{d}= \dfrac{{ad}}{{bd}} + \dfrac{{-cb}}{{bd}} \)\( = \dfrac{{ad - cb}}{{bd}}\)
\( \dfrac{a}{b} . \dfrac{c}{d} =\dfrac{a.c}{b.d}\)
\( \dfrac{a}{b} : \dfrac{c}{d}=\dfrac{a}{b}.\dfrac{d}{c} = \dfrac{a.d}{b.c}\)
Chú ý: Ta có thể rút gọn các phân số về dạng tối giản rồi thực hiện phép tính.
Lời giải chi tiết
\(\displaystyle 4{5 \over 9}:2{5 \over {18}} - 7 < x < \left( {3{1 \over 5}:3,2 + 4,5.1{{31} \over {45}}} \right):\left( { - 21{1 \over 2}} \right)\)
\(\displaystyle \frac{{41}}{9}:\frac{{41}}{{18}} - 7 < x < \left( {\frac{{16}}{5}:\frac{{16}}{5} + \frac{9}{2}.\frac{{76}}{{45}}} \right):\frac{{ - 43}}{2}\)
\(\displaystyle {{41} \over 9}.{{18} \over {41}} - 7 < x < \left( {1 + {{38} \over 5}} \right).{{ - 2} \over 43}\)
\(\displaystyle 2 - 7 < x < \left( {\frac{5}{5} + \frac{{38}}{5}} \right).\frac{{ - 2}}{{43}}\)
\(\displaystyle -5 < x < {{43} \over 5}.{{ - 2} \over {43}}\)
\(\displaystyle - 5 < x < {{ - 2} \over 5}\)
Vì \(x ∈\mathbb Z\) nên \({\rm{x}} \in \left\{ { - 4; - 3; - 2; - 1} \right\}\).