The Collectors

Bài 1.30 trang 37 SBT hình học 11

Câu hỏi: Cho hình thang \(ABCD\) có \(AB\) song song với \(CD\), \(AD=a\), \(DC=b\) còn hai đỉnh \(A\), \(B\) cố định. Gọi \(I\) là giao điểm của hai đường chéo.

Câu a​

Tìm tập hợp các điểm \(C\) khi \(D\) thay đổi.
Phương pháp giải:
Sử dụng định nghĩa: \(T_{\vec v}(M) = M' \Leftrightarrow \overrightarrow {MM'} = \vec v\).
Lời giải chi tiết:
Dựng hình bình hành \(ADCE\). Ta có \(\vec{DC}=\vec{AE}\) không đổi.
Do \(AE=b\) không đổi, nên \(E\) cố định. Do \(AD=EC=a\) nên khi \(D\) chạy trên đường tròn \((A; a)\) thì \(C\) chạy trên đường tròn \((E; a)\) là ảnh của \((A; a)\) qua phép tịnh tiến theo \(\vec{AE}\).

Câu b​

Tìm tập hợp các điểm \(I\) khi \(C\) và \(D\) thay đổi như trong câu a).
Phương pháp giải:
Sử dụng định nghĩa phép vị tự:
Cho \(I\) và \(k\ne 0\). Phép biến hình biến điểm \(M\) thành điểm \(M’\) sao cho \(\vec{IM’}=k\vec{IM}\) được gọi là phép vị tự tâm \(I\), tỉ số \(k\).
Lời giải chi tiết:
Đường thẳng qua \(I\) , song song với \(AD\) cắt \(AE\) tại \(F\).
Ta có \(\dfrac{AI}{IC}=\dfrac{AB}{CD}\)
\(\Rightarrow\dfrac{AI}{AI+IC}=\dfrac{AB}{AB+b}\)
\(\Rightarrow\dfrac{AI}{AC}=\dfrac{AB}{AB+b}\)
\(\Rightarrow\vec{AI}=\dfrac{AB}{AB+b}\vec {AC}\)
Do đó có thể xem \(I\) là ảnh của \(C\) qua phép vị tự tâm \(A\), tỉ số \(\dfrac{AB}{AB+b}\). Vậy khi \(C\) chạy trên \((E; a)\) thì \(I\) chạy trên đường tròn là ảnh của \((E; a)\) qua phép vị tự nói trên.
1615345137359.png
Rất tiếc, câu hỏi này chưa có lời giải chi tiết. Bạn ơi, đăng nhập và giải chi tiết giúp zix.vn nhé!!!
 

Quảng cáo

Back
Top