The Collectors

Câu 47 trang 172 SGK Đại số và Giải tích 11 Nâng cao

Câu hỏi: Chứng minh rằng :

Câu a​

Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) liên tục trên \(\mathbb R\)
Lời giải chi tiết:
Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) xác định trên \(\mathbb R\).
Với mọi \(x_0\in\mathbb R\) ta có:
\(\mathop {\lim }\limits_{x \to {x_0}}f(x) = \mathop {\lim }\limits_{x \to {x_0}} \left({{x^4} - {x^2} + 2} \right) \) \(= x_0^4 - x_0^2 + 2 = f\left( {{x_0}} \right)\)
Vậy f liên tục tại x0​ nên f liên tục trên \(\mathbb R\).

Câu b​

Hàm số \(f\left( x \right) = {1 \over {\sqrt {1 - {x^2}} }}\) liên tục trên khoảng (-1; 1) ;
Lời giải chi tiết:
Hàm số f xác định khi và chỉ khi :
\(1 - {x^2} > 0 \Leftrightarrow - 1 < x < 1\)
Vậy hàm số f xác định trên khoảng (-1; 1)
Với mọi x0​ϵ (-1; 1), ta có :  \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} {1 \over {\sqrt {1 - {x^2}} }} \) \(= {1 \over {\sqrt {1 - x_0^2} }} = f\left( {{x_0}} \right)\)
Vậy hàm số f liên tục tại điểm x0​. Do đó f liên tục trên khoảng  (-1; 1)

Câu c​

Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) liên tục trên đoạn [-2; 2];
Lời giải chi tiết:
ĐKXĐ: \(8 - 2{x^2} \ge 0 \Leftrightarrow {x^2} \le 4 \Leftrightarrow  - 2 \le x \le 2\)
Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) xác định trên đoạn [-2; 2]
Với mọi \({x_0} \in \left( { - 2; 2} \right)\) , ta có:  \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \sqrt {8 - 2x_0^2} = f\left({{x_0}} \right)\)
Vậy hàm số f liên tục trên khoảng (-2; 2).
Ngoài ra, ta có :
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left(x \right) \) \(= \sqrt {8 - 2{{\left( { - 2} \right)}^2}} = 0 = f\left({ - 2} \right)\) nên hàm số liên tục phải tại x=-2.
\(\mathop {\lim }\limits_{x \to {{\left( { 2} \right)}^ - }}\) \(= \sqrt {8 - {{2.2}^2}} = 0 = f\left( 2 \right)\) nên hàm số liên tục trái tại x=2.
Do đó hàm số f liên tục trên đoạn [-2; 2]

Câu d​

Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) liên tục trên nửa khoảng  \(\left[ {{1 \over 2}; + \infty } \right)\)
Lời giải chi tiết:
Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) xác định trên nửa khoảng  \(\left[ {{1 \over 2}; + \infty } \right)\)
Với \({x_0} \in \left( {{1 \over 2}; + \infty } \right)\) ta có  \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {2x - 1} \) \(= \sqrt {2{x_0} - 1} = f\left( {{x_0}} \right)\)
Nên hàm số liên tục trên khoảng  \(\left( {{1 \over 2}; + \infty } \right)\)
Mặt khác ta có  \(\mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} f\left( x \right) \) \(= \mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} \sqrt {2x - 1} = 0 = f\left( {{1 \over 2}} \right)\)
Nên hàm số liên tục phải tại x=1/2.
Do đó hàm số f liên tục trên nửa khoảng \(\left[ {{1 \over 2}; + \infty } \right)\)
Rất tiếc, câu hỏi này chưa có lời giải chi tiết. Bạn ơi, đăng nhập và giải chi tiết giúp zix.vn nhé!!!
 

B. Giới hạn của hàm số. Hàm số liên tục

Quảng cáo

Back
Top